
Cooperative Problem Solving against Adversary:
Quantified Distributed Constraint Satisfaction Problem

Satomi Baba, Atsushi Iwasaki,
Makoto Yokoo
Kyushu University

Fukuoka 819-0395, Japan
{s-baba@agent., iwasaki@,
yokoo@}is.kyushu-u.ac.jp

Marius Călin Silaghi
Florida Institute of Technology

Melbourne, FL 32901, United States
msilaghi@fit.edu

Katsutoshi Hirayama
Kobe University

Kobe 658-0022, Japan
hirayama@maritime.kobe-u.ac.jp

Toshihiro Matsui
Nagoya Insutitute of Technology

Nagoya 466-8555, Japan
matsui.t@nitech.ac.jp

ABSTRACT
In this paper, we extend the traditional formalization of
distributed constraint satisfaction problems (DisCSP) to a
quantified DisCSP. A quantified DisCSP includes several
universally quantified variables, while all of the variables
in a traditional DisCSP are existentially quantified. A uni-
versally quantified variable represents a choice of nature or
an adversary. A quantified DisCSP formalizes a situation
where a team of agents is trying to make a robust plan
against nature or an adversary. In this paper, we present
the formalization of such a quantified DisCSP and develop
an algorithm for solving it by generalizing the asynchronous
backtracking algorithm used for solving a DisCSP. In this
algorithm, agents communicate a value assignment called a
good in addition to the nogood used in asynchronous back-
tracking. Interestingly, the procedures executed by an ad-
versarial/cooperative agent for good/nogood are completely
symmetrical. Furthermore, we develop a method that im-
proves this basic algorithm. Experimental evaluation results
illustrate that we observe an easy-hard-easy transition by
changing the tightness of the constraints, while very loose
problem instances are relatively hard. The modification of
the basic algorithm is also effective and reduces the cycles
about 25% for the hardest problem instances.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms

Cite as: Cooperative Problem Solving against Adversary: Quanti-
fied Distributed Constraint Satisfaction Problem, Satomi Baba, Athushi
Iwasaki, Makoto Yokoo, Marius Silaghi, Katsutoshi Hirayama and Toshi-
hiro Matsui, Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
781-788.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
distributed constraint satisfaction problem, quantified con-
straint satisfaction problem

1. INTRODUCTION
A constraint satisfaction problem (CSP) [10] is the prob-

lem of finding an assignment of values to variables that sat-
isfies all constraints. Each variable takes a value from a
discrete finite domain. A variety of AI problems can be for-
malized as CSPs. Consequently, research on CSPs has a
long and distinguished history in AI literature.

A distributed CSP (DisCSP) [13] is a CSP where variables
and constraints are distributed among agents. Various appli-
cation problems in multi-agent systems that are concerned
with finding a consistent combination of agent actions (e.g.,
sensor networks [6]) can be formalized as DisCSPs. Also,
many algorithms for solving a DisCSP have been developed
(e.g., Asynchronous Backtracking [13], Distributed Dynamic
Backtracking [2], Asynchronous Partial Overlay [11]).

A common assumption used in traditional DisCSP studies
is that all agents are cooperative and everything in the world
is under control of the team of agents. If external factors
exist, they are already fixed and do not change when the
team is searching/executing its plan.

In practice, there are many situations where this assump-
tion does not hold. For example, some uncontrollable ran-
dom factors exist that are not fixed in the planning time.
Even worse, these factors might be controlled by an adver-
sary who acts against the team. In this work, we introduce
the framework of quantified DisCSPs to overcome this lim-
itation by introducing universally quantified variables that
represent a choice of nature or adversary.

There are other extensions of the CSP framework to model
problem solving in an open environment. For example, in
a dynamic CSP, constraints and variables can change over
time [12]. In an open CSP, the domain of a variable is not
known in advance and must be obtained through informa-
tion gathering [5]. The quantified (distributed) CSP frame-
work is different from these approaches in the point that
possible dynamic changes or uncertainty in problem solving
come from an adversary.

A quantified constraint satisfaction problem (QCSP) [3]

781

781-788

is an extension of a CSP in which some variables are uni-
versally quantified. The goal of a QCSP is to find the as-
signments of values to existentially quantified variables that
satisfy all constraints, regardless of the choice of universally
quantified variables. While solving a CSP is generally NP-
complete, solving a QCSP is generally PSPACE-complete.
In a QCSP, a universally quantified variable can be consid-
ered the choice of nature or an adversary. A QCSP can
formalize such application problems as planning under un-
certainty and playing a game against an adversary.
In this paper, we present a quantified DisCSP, which is

a combination of a DisCSP and a quantified CSP by in-
troducing universally quantified variables in DisCSP. In a
quantified DisCSP, a team of agents tries to make a robust
plan against nature or an adversary.
Furthermore, we present a basic algorithm for solving a

quantified DisCSP, which is a generalization of the classic
asynchronous backtracking algorithm [13] for a DisCSP. In
this algorithm, agents communicate a value assignment of a
subset of variables called a good, which satisfies some con-
straints, as well as a value assignment of a subset of variables
called a nogood, which violates some constraints. Interest-
ingly, the procedures executed by an adversarial agent in
response to a good and a nogood are symmetrical to the pro-
cedures executed by a cooperative agent in response to a
nogood and a good. We also show a method that improves
the basic algorithm by creating smaller nogoods and sending
nogoods to non-direct ancestors.
Experimental evaluation results illustrate that as in tradi-

tional DisCSPs, we observe an easy-hard-easy transition by
changing the tightness of the constraints, while very loose
problem instances are relatively hard, since the team of
agents still needs to consider all possible value assignments
of universally quantified variables. Also, the modification of
the basic algorithm is effective and can reduce cycles about
25% for the hardest problem instances.

2. RELATED RESEARCH

2.1 Quantified Boolean Formulas
A quantified boolean formula (QBF) is a generalization of

a SAT in which some variables can be universally quantified.
A SAT is the problem of finding a solution that satisfies a
given boolean formula. A boolean formula in a SAT is in
conjunctive normal form (CNF). A CNF is a conjunction of
clauses, and a clause is a disjunction of literals (a boolean
variable or the negation of a variable).
A QBF is a generalization of a SAT in which variables

can be either universally or existentially quantified. The
meanings of quantifiers are as follows:

• ∃xF : There exists a value of x in {True, False} such
that F is true.

• ∀xF : For every value of x in {True, False}, F is true.

A QBF has form QF as represented in (1), where F is a
propositional formula expressed in CNF and Q is a sequence
of quantified variables such as (∃x or ∀x).

∃x1∀x2∃x3(x1 ∨ x2) ∧ (x2 ∨ ¬x3) (1)

Q consists of n pairs, where each pair consists of quantifier
Qi and variable xi, as represented in (2).

Q1x1 · · ·Qnxn (2)

Note the importance of sequence order. For example, the
meanings of ∀x∃y loves(x, y) and ∃y∀x loves(x, y) are quite
different. ∀x∃y loves(x, y) means any x loves some y, where
y can be different for each x. On the other hand, ∃y∀x loves
(x, y) means particular person y is loved by everybody.

The goal of a QBF is to assign, for every value of univer-
sally quantified variables, the values of existentially quan-
tified variables so that the boolean formula is true. For
universally quantified variable xi, if existentially quantified
variable xj appears before xi, then the boolean formula must
be true for every value of xi. If xj appears after xi, then the
choice of xj can be a function of xi.

Various algorithms for solving QBF have been developed,
e.g., Qube [8] based on the DPLL algorithm [4], sKizzo [1]
based on the Skolemization technique, and so on.

2.2 Quantified CSP
A constraint satisfaction problem (CSP) is a problem of

finding an assignment of values to variables that satisfies
constraints. A CSP is described with n variables x1, x2, · · · ,
xn andm constraints C1, C2, · · · , Cm. Each variable xi takes
a value from a dicrete finite domain Di.

A QCSP [3] is a generalization of a CSP in which some
variables are universally quantified. Also, it is a generaliza-
tion of a QBF. Solving a QCSP is PSPACE-complete.

A QCSP has form QC as in (3), where C is a conjunction
of constraints and Q is a sequence of quantified variables.

∃x1∀x2∃x3∀x4(x1 �= x3) ∧ (x1 < x4) ∧ (x2 �= x3) (3)

The semantics of a QCSP QC can be defined recursively
as follows.

• If C is empty then the problem is true. If Q is of the
form ∃x1Q2x2 · · ·Qnxn, then QC is true iff there exists
some value a ∈ D(x1) such thatQ2x2 · · ·QnxnC[(x1, a)]
is true. If Q is of the form ∀x1Q2x2 · · ·Qnxn, then
QC is true iff for each value a ∈ D(x1), Q2x2 · · ·Qnxn

C[(x1, a)] is true. C[(x1, a)] is a constraint C where x1

is instantiated to value a.

Several algorithms solve QCSP, most of which are exten-
sions of QBF-based algorithms. One notable exception is
an algorithm called QCSP-Solve [7], which introduces tech-
niques specialized to a QCSP.

2.3 Distributed CSP
A DisCSP [13] is a CSP in which variables and constraints

are distributed among agents.
We assume the following communication model.

• Agents communicate by sending messages.

• An agent can send messages to other agents iff the
agent knows their addresses.

• For transmission between any pair of agents, messages
are received in the order in which they were sent.

Each agent has some variables and tries to determine their
values. However, inter-agent constraints exist, and the value
assignment must satisfy them.

Asynchronous Backtracking Algorithm
We make the following assumptions while describing the
asynchronous backtracking algorithms [13] for simplicity.

782

• Each agent has exactly one variable.

• Each agent knows all constraints involving its variable.

• All constraints are binary.

Under the above assumptions, a DisCSP can be repre-
sented as a network, where agents are nodes and constraints
are links. We assume a link is directed. More specifically, for
two agents with a constraint relationship, one agent checks
the constraint after receiving the other agent’s value. Thus,
the direction of the link is set from the agent that sends its
value to the agent that checks the constraint. We assume
the priority order of variables/agents is determined by the
alphabetical order of the variable identifiers. The direction
of the link is determined by this priority order.
The asynchronous backtracking algorithm is a basic algo-

rithm for solving a DisCSP. In this algorithm, each agent
determines its value asynchronously and concurrently and
sends this value to related agents connected by outgoing
links. Then each agent waits for incoming messages. If an
agent receives a message, it executes a certain procedure
for each message type. In this algorithm, the following two
types of messages are used.

• (ok?, (xj , value)) : this message conveys that the value
of xj is value.

• (nogood, xj , nogood) : this message conveys a new no-
good. A nogood is a combination of values that causes
a constraint violation. For example, nogood{(xi, di),
(xj , dj)} represents that a combination of (xi, di) and
(xj , dj) causes a constraint violation.

In the asynchronous backtracking algorithm, by receiving
an ok? message, agent xi tries to find a consistent value with
higher-priority agents. If no consistent value exists, agent
xi sends a nogood message to the agent with the lowest
priority among agents whose priorities are higher than agent
xi. The asynchronous backtracking algorithm is guaranteed
to be complete.

3. QUANTIFIED DISTRIBUTED CSP

3.1 Problem Definition
A quantified DisCSP is a quantified CSP where the vari-

ables and constraints are distributed among agents. We as-
sume each existentially quantified variable is owned by a
separate agent, and all universally quantified variables are
controlled by a single adversary. The sequence of quantified
variables defines the order of decision making. If xi appears
before xj in the sequence, when determining the value of xj ,
the value assignment of xi is observable for the agent who
owns xj . We assume that a team of agents with existentially
quantified variables tries to find a plan for determining its
variables so that all constraints are satisfied, regardless of
the value assignments of the adversary.

3.2 Example of Quantified Distributed CSP
Consider contingency planning as an example of a quanti-

fied DisCSP. The goal is creating a communication network
where n nodes are connected with each other (directly or
indirectly) under the following requirements.

• The final network must be robust against k node fail-
ures; even to the failure of k nodes, the remaining net-
work must be connected.

���� ���� ���� ������������ ���� ���� ��������

Figure 1: Failed plan

���� ����

����

����

����

���� ����

����

����

����

Figure 2: Successful plan

• The final network must be constructed within T steps.

• In each step, each node can place at most one bi-
directional communication link (which connects the
node with another node).

• The total number of links cannot exceed l.

• An adversary can make any one node fail after each
step (except for the final T -th step).

• The adversary can make any k nodes fail after T steps
(i.e., it can make T + k − 1 nodes fail in total).

In this problem, we assume each agent is a node. This
problem can be formalized as a quantified DisCSP as follows.

• Variables: xij , where 1 ≤ i ≤ n, 1 ≤ j ≤ T , and yj ,
where 1 ≤ j ≤ T + k − 1. i means the node id and j
means a time step where j ≤ T . For yj where j ≥ T ,
yj represents an adversary’s action after T steps.

• Domain: xij takes value from {0, . . . , i−1, i+1, . . . , n}.
Each value represents a node to which xij sets a link.
When xij takes value 0, xij doesn’t set a link.
yj takes value from {0, . . . , n}. Each value represents
a node that fails. When yj takes value 0, no node fails.

• Constraint: The total number of links is less than l.
The remaining nodes are connected with each other
after the choice of yT+k−1.

• Quantifier sequence: ∃x11 · · · ∃xn1∀y1 . . . ∃x1T · · · ∃xnT

∀yT . . . ∀yT+k−1

We show examples of the plans in Figs. 1 and 2, where
n = 6, T = 3, k = 2, l = 9. In Fig. 1, after the second step,
the adversary has caused the left and right nodes to fail.
Since already 6 links have been used, the agents can only
use 3 more links. Thus, they cannot create a network that
is robust against two node failures in the third step.

On the other hand, in Fig. 2, the agents can create a
network that is robust against two node failures in the third
step. The agents must carefully decide the order of placing
links to achieve this goal.

4. ALGORITHM FOR SOLVING QUANTI-
FIED DISTRIBUTED CSP

In this section, we present an algorithm for solving quan-
tified DisCSPs. As an initial step, we develop an algorithm
that is an extension of the classic asynchronous backtrack-
ing algorithm. Although many works exist on more sophis-
ticated and efficient algorithms for DisCSPs, we chose the
asynchronous backtracking algorithm as the basis of our new
algorithm since it is the most basic and clear algorithm for
solving DisCSPs. We believe the techniques/ideas utilized

783

in this new algorithm are effective when developing more ef-
ficient quantified DisCSP algorithms based on other DisCSP
algorithms.

4.1 Basic Ideas
We introduce the following ideas to extend the asynchronous

backtracking algorithm for quantified DisCSPs.

• The priority order among agents is determined based
on the sequence of quantified variables; if xj appears
before xi, then xj has a higher priority than xi. Note
that the order among existentially quantified variables,
whose positions are adjacent in the quantifier sequence,
can be determined arbitrarily.

• For simplicity, we assume agents know a Depth First
Search (DFS) tree, which is determined by the priority
order.

• A virtual agent, who exists for each universally quan-
tified variable, imitates the adversary’s actions but co-
operates in searching for a plan with its team of co-
operative agents. In a sense, the team of cooperative
agents is making a plan off-line. When the team actu-
ally plays against the adversary, it executes the plan
obtained in this off-line search. In reality, one of the
agents on the team should act as a virtual agent. Any
team member can act as a virtual agent for universally
quantified variable xi. However, to reduce communi-
cation costs, an agent who is the parent or child of xi

in the DFS tree should act as the virtual agent.

• Agents communicate good messages as well as ok?
and nogood messages. A good is a value assignment
of a subset of variables that satisfies constraints owned
by the sender and its descendants. Interestingly, the
procedures executed by adversarial agents for good and
nogood are symmetrical to the procedures executed by
cooperative agents for good and nogood, as described
in the next subsection.

4.2 Generation of nogood/good
In this subsection, we compare the procedures executed at

the existentially/universally quantified variables for generat-
ing new good/nogood, and show they are logically correct.
A nogood is a combination of values that represents a con-

tradiction. For example, nogood {(x1, 1), (x2, 2)} represents
thatx1 = 1 ∧ x2 = 2, causes a contradiction.
A new nogood is generated in the following cases.

• Assume x2 is an existentially quantified variable. A
nogood {(x1, 1)} can be generated from x2 = 1∨x2 = 2,
nogood {(x1, 1), (x2, 1)}, and nogood {(x1, 1), (x2, 2)}.
This is a standard resolution procedure, where from
x1 = 1 ∧ x2 = 1 → ⊥, x1 = 1 ∧ x2 = 2 → ⊥, and
x2 = 1 ∨ x2 = 2, we derive x1 = 1 → ⊥.

• Assume that x2 is a universally quantified variable. A
nogood {(x1, 1)} can be generated from nogood {(x1, 1),
(x2, 1)}.
This procedure means from x1 = 1 ∧ x2 = 1 → ⊥ and
x2 = 1, we derive x1 = 1 → ⊥.

Accordingly, a cooperative agent with an existentially quan-
tified variable sends a nogood message only after it finds
out that all of its possible values cause contradiction (either
by its own constraints or by received nogoods).

On the other hand, a virtual/adversarial agent with a uni-
versally quantified variable will send a nogood message im-
mediately after it finds out that at least one of its possible
values causes a contradiction.

A good is a combination of values that satisfies constraints.
For example, good {(x1, 1), (x2, 2)}, which is generated by
agent x3, represents that x1 = 1 ∧ x2 = 2 satisfies all the
constraints of x3 and its descendants.

A good is generated in the following cases.

• Assume x2 is an existentially quantified variable. A
good {(x1, 1)} can be generated from good {(x1, 1),
(x2, 1)}, which is sent from its only child x3, if x1 =
1 ∧ x2 = 1 satisfies the constraint between x1 and x2.

This procedure means that {(x1, 1), (x2, 1)} satisfies all
constraints related to x3 and its descendants as well as
the constraint between x1 and x2, so we conclude that
{(x1, 1)} can satisfy all constraints related to x2 and
its descendants (assuming x2 chooses its value to 1).

• Assume x2 is a universally quantified variable. A good
{(x1, 1)} can be generated from x2 = 1 ∨ x2 = 2, good
{(x1, 1), (x2, 1)} and good {(x1, 1), (x2, 2)} sent from its
only child x3, if x1 = 1 ∧ x2 = 1 and x1 = 1 ∧ x2 = 2
satisfy the constraint between x1 and x2.

This procedure means that both {(x1, 1), (x2, 1)} and
{(x1, 1), (x2, 2)} satisfy all constraints related to x3

and its descendants, as well as the constraint between
x1 and x2, and x2 = 1 ∨ x2 = 2, so we conclude that
{(x1, 1)} can satisfy all constraints related to x2 and
its descendants (regardless of the choice of x2).

Consequently, a cooperative agent who has an existen-
tially quantified variable immediately sends a good message
after it receives a good for at least one of its possible values
(and the value also satisfies its own constraints). On the
other hand, a virtual/adversarial agent who has a univer-
sally quantified variable sends a good message only after
it receives good messages for all of its possible values (and
each of these values satisfies its own constraints).

4.3 Details of Algorithm
In this algorithm, as in the asynchronous backtracking al-

gorithm, each agent determines its value asynchronously and
concurrently. For simplicity, we assume an agent sends its
value assignment by ok? messages to all descendants. After
an agent sends its value, it waits for an incoming message.
If an agent receives a message, it executes the procedure
defined for each message type.

There are three types of messages; ok?, nogood, and
good. Each agent sends its agent view as a good/nogood,
where the agent view contains the value assignments of an-
cestors. The procedures executed by a cooperative agent
upon receiving messages are shown in Fig. 3, and the proce-
dures executed by an adversarial/virtual agent upon receiv-
ing messages are shown in Fig. 4. Fig. 5 describes back-
track and send good procedures that are used in the above
procedures. As in the asynchronous backtracking algorithm,
when a cooperative agent receives an ok? message, the
agent updates its agent view and checks whether its current
value is consistent with its agent view. When a cooperative
agent is a leaf agent, it sends a good message to the parent
if the current value is consistent with its agent view. On
the other hand, when an adversarial/virtual agent receives

784

when received (ok?, (xj , value)) do
add (xj , value) to agent view;
check agent view;
when agent is a leaf and,
agent view contains all ancestors do
send good; end do; end do;

when received (nogood, xj , nogood) do
add nogood to nogood list
check agent view; end do;

when received (good, xj , good) do
add good to good list
when received consistent good from all children
and agent view contains all ancestors do
send good; end do; end do;

procedure check agent view;
when current value and agent view are inconsistent do
change current value to a new consistent value;
when cannot find such a value do backtrack; end do;

send (ok?, (xi, current value)) to descendants;

Figure 3: Procedures of cooperative agent upon re-
ceiving messages

an ok? message, it sends a nogood message if it finds one
value that causes a constraint violation.
While a cooperative agent tries to find a value that sat-

isfies all constraints, an adversarial/virtual agent tries to
find a value that violates some constraints. Thus, the pro-
cedures executed by an adversarial/virtual agent upon re-
ceiving good and nogood messages are symmetrical to the
procedures executed by a cooperative agent upon receiving
good and nogood messages.
When a cooperative agent receives a nogood message,

it searches for another value that satisfies constraints. If it
cannot find any consistent value, it sends a nogood message
to its parent. On the other hand, when an adversarial agent
receives a nogood message, it does not search for another
value that satisfies constraints but immediately sends a no-
good message to its parent, since it can choose the value de-
scribed in the received nogood and violate some constraints.
When a cooperative agent receives good messages from

all children for the same combination of values, it imme-
diately sends a good message to its parent, since it can
choose the value described in the received good and satisfy
the constraints. On the other hand, when an adversarial
agent receives a good message, it searches for another value
to violate some constraints. If it cannot find such a value,
i.e., it receives good messages for all possible values, it then
sends a good message to its parent.
This algorithm terminates when the root agent generates

an empty good or nogood. A good/nogood represents a set
of value assignments, where existentially/universally quan-
tified variables can satisfy/violate constraints regardless of
the choice of universally/existentially quantified variables.
Thus, the problem is solvable/unsolvable when an empty
good/nogood is found.
For simplicity, we describe the algorithm so that it only

checks whether the problem is solvable. To construct a plan
for acting against the adversary, a cooperative agent must
record goods sent from its children.

when received (ok?, (xj , value)) do
add (xj , value) to agent view;
check agent view adversary; end do;

when received (nogood, xj , nogood) do
add nogood to nogood list;
when nogood is consistent with agent view and
current value, and agent view contains all ancestors do
backtrack; end do; end do;

when received (good, xj , good) do
add good to good list;
check agent view adversary; end do;

procedure check agent view adversary;
when for some v ∈ Di,
v and agent view are inconsistent do
backtrack; end do;

when for all v ∈ Di,
received good messages from all children (or a leaf agent),
and agent view and v are consistent do
send good; end do;

otherwise do choose v ∈ Di so that
some children have not sent a good message yet;
change current value to v;
send (ok?, (xi, current value)) to descendants; end do;

Figure 4: Procedures of adversarial/virtual agent
upon receiving messages

4.4 Example
We illustrate an example of an algorithm execution in

Fig. 6, which represents a problem that consists of Q =
∃x1∀x2∃x3∃x4, C = {nogood {(x1, 1), (x3, 1)}, nogood {(x2, 1),
(x3, 2)}, nogood {(x2, 2), (x4, 1)}}, and D1 = D2 = D3 =
D4 = {1, 2}.

By receiving ok? messages from x1 and x2, the agent view
of x3 and x4 will be {(x1, 1), (x2, 1)} (Fig. 6 (b)). Since there
is no value for x3 that is consistent with this agent view, x3

sends a nogood message to its parent x2. Also, since there
is a value for x4 that is consistent with this agent view, x4

sends a good message to its parent x2 (Fig. 6 (c)).
After receiving these nogood and good messages, x2

sends a nogood message to x1 because x2 is an adversarial
agent (Fig. 6 (d)). By receiving this nogood message, x1

knows that x1 = 1 has caused a constraint violation. Thus,
x1 changes its value to 2 and sends ok? messages to its
descendants (Fig. 6 (e)). After receiving this ok? message,
x2, x3, and x4 record this value to their agent view. x3 and
x4 send good messages to x2 because x3 and x4 can select
a value that satisfies their constraints. (Fig. 6 (f)).

Now x2 has received good messages for its value 1 from
all children. Thus, x2 selects another value 2 (so that it
might violate some constraints) and sends ok? messages
(Fig. 6 (g)).

x3 and x4 receive this ok? message and record the value
to their agent view. Since both x3 and x4 can select a value
that satisfies constraints, x3 and x4 send good messages
to x2 (Fig. 6 (h)). After receiving these good messages, x2

sends a good message to x1 because every value for x2 satis-
fies related constraints (Fig. 6 (i)). Since x1 is a cooperative
agent, x1 can select the current value. Thus, an empty good
is generated and this problem is solvable.

785

(((())))b

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()1ok? 1,,x ()1ok? 1 ,, x()1ok? 1,, x

()1ok? 2 ,, x

()1ok? 2 ,, x

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))d

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })1,

nogood

1x

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))e

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()2ok? 1,, x ()2ok? 1,, x()2ok? 1 ,, x

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

nogood

42 xx

,

(
() (){ })1,,1,

nogood

31 xx

,

(
() (){ })2,,1,

nogood

32 xx

,

()a (((())))c

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃

(
() (){ })1,,1,

good

21 xx

,

(
() (){ })1,,1,

nogood

21 xx

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))g

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃
()2ok? 2 ,, x

()2ok? 2 ,, x

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))i

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })2,

good

1x

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))f

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

good

21 xx

,

(
() (){ })1,,2,

good

21 xx

,

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))h

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })2,,2,

good

21 xx

,

(
() (){ })2,,2,

good

21 xx

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))b

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()1ok? 1,,x ()1ok? 1 ,, x()1ok? 1,, x

()1ok? 2 ,, x

()1ok? 2 ,, x

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))d

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })1,

nogood

1x

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))e

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()2ok? 1,, x ()2ok? 1,, x()2ok? 1 ,, x

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

nogood

42 xx

,

(
() (){ })1,,1,

nogood

31 xx

,

(
() (){ })2,,1,

nogood

32 xx

,

()a (((())))c

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃

(
() (){ })1,,1,

good

21 xx

,

(
() (){ })1,,1,

nogood

21 xx

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))b

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()1ok? 1,,x ()1ok? 1 ,, x()1ok? 1,, x

()1ok? 2 ,, x

()1ok? 2 ,, x

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))b

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()1ok? 1,,x ()1ok? 1 ,, x()1ok? 1,, x

()1ok? 2 ,, x

()1ok? 2 ,, x

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

()1ok? 1,,x ()1ok? 1 ,, x()1ok? 1,, x

()1ok? 2 ,, x

()1ok? 2 ,, x

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))d

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })1,

nogood

1x

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))d

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })1,

nogood

1x

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

(
(){ })1,

nogood

1x

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))e

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()2ok? 1,, x ()2ok? 1,, x()2ok? 1 ,, x

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))e

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

()2ok? 1,, x ()2ok? 1,, x()2ok? 1 ,, x

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

()2ok? 1,, x ()2ok? 1,, x()2ok? 1 ,, x

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

nogood

42 xx

,

(
() (){ })1,,1,

nogood

31 xx

,

(
() (){ })2,,1,

nogood

32 xx

,

()a

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

nogood

42 xx

,

(
() (){ })1,,1,

nogood

31 xx

,

(
() (){ })2,,1,

nogood

32 xx

,

()a (((())))c

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃

(
() (){ })1,,1,

good

21 xx

,

(
() (){ })1,,1,

nogood

21 xx

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))c

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃ 4x∃

(
() (){ })1,,1,

good

21 xx

,

(
() (){ })1,,1,

nogood

21 xx

,

() (){ }1,,1,

_

21

3

xx

viewagent

= () (){ }1,,1,

_

21

4

xx

viewagent

=

(){ }1,

_

1

2

x

viewagent

=

(((())))g

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃
()2ok? 2 ,, x

()2ok? 2 ,, x

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))i

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })2,

good

1x

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))f

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

good

21 xx

,

(
() (){ })1,,2,

good

21 xx

,

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))h

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })2,,2,

good

21 xx

,

(
() (){ })2,,2,

good

21 xx

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))g

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃
()2ok? 2 ,, x

()2ok? 2 ,, x

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))g

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃
()2ok? 2 ,, x

()2ok? 2 ,, x

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃
()2ok? 2 ,, x

()2ok? 2 ,, x

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))i

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })2,

good

1x

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))i

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
(){ })2,

good

1x

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

(
(){ })2,

good

1x

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))f

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

good

21 xx

,

(
() (){ })1,,2,

good

21 xx

,

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))f

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

(
() (){ })1,,2,

good

21 xx

,

(
() (){ })1,,2,

good

21 xx

,

() (){ }1,,2,

_

21

3

xx

viewagent

= () (){ }1,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))h

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃

(
() (){ })2,,2,

good

21 xx

,

(
() (){ })2,,2,

good

21 xx

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

(((())))h

1
x∃∃∃∃

2x∀∀∀∀

3x∃∃∃∃ 4x∃∃∃∃ 4x∃∃∃∃

(
() (){ })2,,2,

good

21 xx

,

(
() (){ })2,,2,

good

21 xx

,

() (){ }2,,2,

_

21

3

xx

viewagent

= () (){ }2,,2,

_

21

4

xx

viewagent

=

(){ }2,

_

1

2

x

viewagent

=

Figure 6: Example of algorithm execution

procedure backtrack
nogood ← agent view
when nogood = {} do
broadcast to other agents that the problem is unsolvable;
terminate this algorithm; end do;

send (nogood, xi, nogoods) to its parent xj ;
remove (xj , d) from agent view;

procedure send good
good ← agent view
when good={} do
broadcast to other agents that the problem is solvable;
terminate this algorithm; end do;

send (good, xi, good) to its parent

Figure 5: Procedure for backtrack and send good

4.5 Algorithm Correctness and Completeness
This algorithm terminates by concluding that the prob-

lem is unsolvable when an empty nogood is generated at the
root agent. On the other hand, it terminates by concluding
the problem is solvable when an empty good is generated at
the root agent. Therefore, to show that this algorithm is
correct/complete, it suffices to show the following facts.

• The procedures for generating new nogood/good are
logically correct. When an empty good is generated,
the problem is solvable. When an empty nogood is
generated, the problem is unsolvable.

• The algorithm does not stop before an empty nogood
or an empty good is generated at the root agent, and
this algorithm never enters an infinite processing loop.

We prove these two facts in Theorems 1 and 2, respectively.

Theorem 1. If an empty good is generated in this algo-
rithm, then the problem is solvable. If an empty nogood is
generated, then the problem is unsolvable.

Proof. We show that the procedures for generating new
nogood/good are logically correct. Therefore, when an empty

good is generated, the problem is solvable. When an empty
nogood is generated, the problem is unsolvable.

We prove this by structural induction. First, for the base
case, we show that the procedure of a leaf agent is correct.
A leaf agent only receives ok? messages. If the leaf agent is
a cooperative agent, it generates a good and sends it to its
parent only when it can select a value that is consistent with
its agent view. Moreover, it generates a nogood and sends it
to its parent only when it cannot select any consistent value.
It is clear that the generated good/nogood is correct.

If the leaf agent is an adversarial/virtual agent, this agent
generates a good and sends it to the parent only when no
value exists that causes constraint violations. Moreover, it
generates a nogood and sends it to the parent if at least
one value exists that causes some constraint violations. It is
clear that the generated good/nogood are correct.

Now, for the inductive case, assume that for agent xi, all
received goods/nogoods from its descendants are correct. We
derive that the good/nogood generated by xi are correct.

If xi is a cooperative agent, it generates a nogood identical
to its agent view only when, for each of its values v ∈ Di,
either of two conditions holds: (i) v and agent view violate
some constraints related to xi, or (ii) a nogood that is consis-
tent with xi = v and agent view is sent from its child. Con-
sequently, assuming the nogoods sent from its children are
correct, this newly generated nogood is also correct. Also, xi

generates a good identical to its agent view only when there
exists at least one value v ∈ Di, which satisfies the following
conditions: (i) xi receives good messages from all children,
(ii) each good is consistent with xi = v and agent view, and
(iii) xi = v and agent view satisfy its own constraints. Thus,
assuming the goods sent from its children are correct, this
newly generated good is also correct.

If xi is an adversarial/virtual agent, it generates a no-
good identical to its agent view when at least one value v ∈
Di exists, where either of two conditions holds: (i) v and
agent view violate some constraints related to xi, or (ii) a
nogood that is consistent with xi = v and agent view is sent
from its child. Therefore, assuming the nogoods sent from
its children are correct, this newly generated nogood is also

786

correct. Also, xi generates a good identical to its agent view
only when, for each of its values v ∈ Di, it receives good
messages from all children and the good is consistent with
xi = v and agent view, and v and agent view satisfy its own
constraints. Thus, assuming the goods sent from its children
are correct, this newly generated good is also correct.
From the above facts, the procedures for generating new

nogood/good at each agent are logically correct. When an
empty good is generated at the root agent, the problem is
solvable. On the other hand, when an empty nogood is gen-
erated at the root agent, the problem is unsolvable.

Theorem 2. The algorithm does not stop before the root
agent generates an empty good or nogood, and never enters
an infinite processing loop.

Proof. To prove Theorem 2, we first show that when an
agent sends an ok? message, it receives a good or nogood
message from each of its children. We show this fact by
structural induction. For the base case, it is clear that a leaf
agent never fails to send a good/nogood message.
For the inductive case, we show that agent xi always sends

a good or nogood message to its parent, assuming that it
always receives good or nogood messages from its children.
If xi is a cooperative agent, when xi receives an ok? mes-

sage from its parent, it sends a good to the parent if it re-
ceives good messages for its current value and its agent view
from all children. On the other hand, if xi receives a nogood
from a child, xi changes its value and sends ok? messages.
The descendants send a nogood or good in reply to this mes-
sage. Since the domain of the variable of xi is finite, xi

cannot change its value forever. Eventually, it will send a
nogood message to its parent.
If xi is an adversarial/virtual agent, when xi receives an

ok? message from its parent, it sends a nogood to the parent
if it receives a nogood messages for its current value and its
agent view from any child. On the other hand, if xi receives
a good from all of its children, xi changes its value and sends
ok? messages. The descendants send a nogood or good in
reply to this message. Since the domain of the variable of
xi is finite, xi cannot change its value forever. Eventually,
it will send a good message to its parent.
Thus, each child of the root agent always sends a nogood

or good message if the root agent sends an ok? message.
If the root is a cooperative agent, when it receives good

messages for its current value and its agent view from all
children, it generates an empty good. On the other hand,
if it receives a nogood from a child, it changes its value and
sends ok? messages. The descendants send a nogood or
good in reply to this message. Since the variable domain is
finite, it cannot change its value forever. Eventually, it will
generate an empty nogood and the algorithm terminates.
If the root is an adversarial/virtual agent, when it receives

a nogood message for its current value and its agent view
from one of its children, it generates an empty nogood. On
the other hand, if it receives good messages from all of its
children, it changes its value and sends ok? messages. The
descendants send a nogood or good in reply to this message.
Since the domain of the variable of the root is finite, it can-
not change its value forever. Eventually, it will generate an
empty good and the algorithm terminates.

4.6 Improvement of Basic Algorithm
We show a method for improving the basic algorithm. its

main ideas are as follows.

• Generate a smaller nogood based on a resolvent-based
learning technique described in [9].

• Skip sending a new nogood to a universally quantified
variable/agent.

The modified algorithm is correct and complete. We omit
the proof due to space limitations.

4.6.1 Resolvent-based Learning
We generate a smaller nogood based on a resolvent-based

learning technique described in [9] as follows.
Assume agent i has variable xi, whose domain is Di. Each

value d ∈ Di is violating one or more constraints under the
current agent view. For each value d ∈ Di, agent i chooses
one nogood as follows.

• From the nogoods related to d, choose the smallest one.
If multiple smallest nogoods exist, then compare the
priority of the lowest priority agents in these nogoods,
and choose the one with the higher priority.

Then we generate a new nogood by taking the union of the
selected nogoods.

In the basic algorithm, the whole agent view is used to
create a new nogood. Thus, the new nogood might contain
variables irrelevant to the current failure, so the new nogood
is always sent to the direct parent, even though the parent
is not responsible for the current failure. By utilizing this
resolvent-based learning technique, an agent can create a
smaller nogood that contains less irrelevant variables and
can send the nogood directly to an ancestor who is not a
direct parent. Thus, the efficiency of the algorithm can be
improved.

4.6.2 Skipping Universally Quantified Variable
When the recipient of a new nogood is a universally quan-

tified variable, we can skip sending this new nogood to the
universally quantified variable/virtual agent. We remove the
agent from the nogood and send the new nogood to the lowest
priority agent in the nogood. This operation is correct since
if we send the nogood to the universally quantified variable,
it will eventually remove itself from the nogood and send a
new nogood to its parent.

Furthermore, this operation can be done repeatedly as
long as the lowest priority variable in the nogood is a uni-
versally quantified variable. As a result, we can reduce the
number of required cycles.

5. EXPERIMENTS
In this section, we show the experimental evaluation re-

sults of the basic and modified algorithms.
We used a discrete event simulation, where each agent

maintains its own simulated clock. An agent’s time is in-
cremented by one simulated time unit whenever it performs
one computation cycle. One cycle consists of reading all in-
coming messages, performing local computation, and send-
ing messages. We assume that a message issued at time t
is available to the recipient at time t + 1. We analyzed the
performance for the number of cycles required to solve the
problem.

We created problem instances based on the model de-
scribed in [7]. In this model, the sequence of quantified
variables Q is divided into three blocks. The first and third

787

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
cy

cl
e

ra
tio

 o
f s

ol
va

bl
e

pr
ob

le
m

 in
st

an
ce

sbasic
modified

ratio

Figure 7: Required Cycles (n = 15, n∀ = 5, npos = 6,
d = 5, p = 0.35, p∀∃ = 0.5)

blocks consist of existentially quantified variables, and the
second block consists of universally quantified variables. A
problem instance is generated based on seven parameters,
i.e., <n, n∀, npos, d, p, p∃∃, p∀∃>. The meanings of these
parameters are as follows. n is the number of variables, n∀
is the number of universally quantified variables, and npos is
the position of the first universally quantified variable in se-
quence Q. Furthermore, d represents the domain size, which
is the same for all variables, and p represents the number of
binary constraints as a fraction of all possible constraints.
We assume a constraint is given as nogoods. p∃∃ represents
the number of nogoods in the form of ∃xi∃xj , cij as a fraction
of all possible tuples. p∀∃ is a similar quantity for ∀xi∃xj , cij
constraints, described below. The other two types of con-
straints are not generated since they can be removed by
preprocessing.
If many nogoods exist in the form of ∀xi∃xj , cij , most

problem instances are insolvable. To generate enough solv-
able instances, nogoods in the form of ∀xi∃xj , cij are re-
stricted in the following way [7].
First, we generate a random total bijection from one do-

main to the other. All tuples that are not in this bijection are
excluded in the nogoods. From this total bijection, choose
p∀∃ fraction of tuples as nogoods.
In these experiments, we chose the following parameters:

n = 15, n∀ = 5, npos = 6, d = 5, p = 0.35, p∀∃ = 0.5. Then
we varied p∃∃ from 0.10 to 0.90. Fig. 7 shows the required
cycles of the basic and modified algorithms. Each data point
represents the average of 100 problem instances.
We observed an easy-hard-easy transition by changing

p∃∃, but when p∃∃ is small (i.e., the constraints are loose),
the problem instances are relatively hard compared to the
cases where p∃∃ is large (i.e., the constraints are tight). This
is because even if the constraints are loose, the team of
agents still needs to consider all possible value assignments
of the universally quantified variables.
We also observed that our modification of the basic al-

gorithm is effective, in particular, when p∃∃ becomes large,
because the number of generated nogoods increases as the
constraints become tight. In the hardest problem instances
(where p∃∃ is about 0.3), the modified algorithm can reduce
cycles by about 25%.

6. CONCLUSION
In this paper, we introduced a generalization of a DisCSP

called a quantified DisCSP, which formalizes a situation where
a team of agents makes a plan against an adversary. Fur-
thermore, we developed an algorithm for solving quantified
DisCSPs, which is an extension of the classic asynchronous
backtracking algorithm, and developed a method for improv-
ing this basic algorithm. Our experimental evaluation re-
sults illustrate that we observe an easy-hard-easy transition
by changing the tightness of constraints, while very loose
problem instances are relatively hard. The modification of
the basic algorithm is effective and reduced cycles about 25%
for the hardest problem instances.

Our future works include developing more efficient com-
plete algorithms for quantified DisCSPs and developing a
real-time algorithm that can make a decision to meet a dead-
line even if a complete solution cannot be found.

7. REFERENCES
[1] M. Benedetti. sKizzo: A suite to evaluate and certify

QBFs. In CADE, pages 369–376, 2005.

[2] C. Bessiere, A. Maestre, and P. Meseguer. Distributed
dynamic backtracking. In IJCAI DCR Workshop,
2001.

[3] H. M. Chen. The computational complexity of
quantified constraint satisfaction. PhD thesis, Cornell
University, 2004.

[4] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Commun. ACM,
5(7):394–397, 1962.

[5] B. Faltings and S. Macho-Gonzalez. Open constraint
programming. Artificial Intelligence, 161(1-2):181–208,
2005.

[6] C. Fernàndez, R. Béjar, B. Krishnamachari, and C. P.
Gomes. Communication and computation in
distributed CSP algorithms. In CP, pages 664–679,
2002.

[7] I. P. Gent, P. Nightingale, and K. Stergiou.
QCSP-Solve: A solver for quantified constraint
satisfaction problems. In IJCAI, pages 138–143, 2005.

[8] E. Giunchiglia, M. Narizzano, and A. Tacchella.
QUBE: A system for deciding quantified boolean
formulas satisfiability. In IJCAR, pages 364–369, 2001.

[9] K. Hirayama and M. Yokoo. The effect of nogood
learning in distributed constraint satisfaction. In
ICDCS, pages 169–177, 2000.

[10] A. K. Mackworth. Constraint satisfaction. In S. C.
Shapiro, editor, Encyclopedia of Artificial Intelligence,
pages 285–293. John Wiley & Sons, 1992.

[11] R. Mailler and V. Lesser. Asynchronous partial
overlay: A new algorithm for solving distributed
constraint satisfaction problems. Journal of Artificial
Intelligence Research, 25:529–576, 2006.

[12] G. Verfaillie and T. Schiex. Solution reuse in dynamic
constraint satisfaction problems. In AAAI, pages
307–312, 1994.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673–685,
1998.

788

